硕鼠的博客站

范路的博客主站,时而会发些东西。

Posts Tagged ‘开发者’


大家好,欢迎收听老范讲故事YouTube频道。今天,咱们来讲一讲黄仁勋在COMPUTEX上的狂欢。COMPUTEX是一年一度在台湾举行的计算机大会。黄仁勋,作为现在真正AI时代的当红炸子机,可能是唯一靠AI赚了大钱的人。虽然微软也在赚钱,但是微软整个靠AI挣的钱并没有那么多。真正靠AI赚了大钱的公司只有他一家——英伟达。刚才我看了一下,英伟达现在市值2.7万亿美金。大家知道,再往前就是微软的3.2万亿,第二名是苹果,2.9万亿,还差那么一点点。可能稍微一哆嗦,英伟达就有可能成为世界第二市值的公司了。那么,黄仁勋上面都讲了什么呢?作为网红,肯定还要先暴露一下行业秘密,别人都不知道他知道的事情。上来先说一下他现在讲的是什么——就是GPT-4到底有多少参数。GPT-3.5大家知道是1,700多亿参数,就是一个170多亿级别的模型。但是到GPT-4的时候,OpenAI就再也没有出来说它到底有多少参数。很多人说你是不是超过万亿了,对OpenAI来说,这个数据不是很准确。我来辟谣了,但是具体有多少,从来没有讲过。黄仁勋在前面的GTC,就是GPU技术大会上,每年一次的英伟达自己的开发者大会上,上面也讲了……

说起来1.8T,这个1.8T指的是什么呢?其实就是1.8万亿参数,而且它是一个Moe模型。当时OpenAI并没有对此多说什么,但这一次,在《Computer Text》上,他们又反复强调了这个事情,明确指出GPT-4的训练参数达到了1.8T。这让人们意识到,想要达到GPT-4的水平,还有很长的路要走。尽管现在大家都在努力研发号称能达到或接近GPT-4水平的模型,比如几百亿参数的模型,比如梅塔的拉马3可能会有一个400亿参数的模型,国内也出现了很多一两百亿参数的模型。但事实是,即使提到的1.8T参数,如果考虑到是Moe模型,分成八份来看,那么单个模型可能也就相当于200多亿参数的水平。

Read More…

大家好,

欢迎收听老范讲故事YouTube频道。今天咱们来讲一讲国内大模型厂商,突然就变脸了,开始打价格战,而且是价格生死战。这个战争是从哪开始的?首先是有一个大模型叫deep sick,他先开始干的。原来我们使用100万TOKEN,大概也得十几二十块钱,甚至贵的也能有五六十块钱。国外的大模型经常是要到十几美金。他呢,直接来了一个啊,100万TOKEN一块钱人民币。DPC大家可能不是那么熟悉,因为他后边不是一个互联网巨头,也不是原来从互联网大厂出来的人,他后边是一个私募巨头,换方量化直接不讲武德啊,100万TOKEN一块钱人民币。

那紧随其后的呢,是豆包啊,这是字节跳动下边的大模型,直接降价到100万TOKEN 0.8元人民币。你不是一块吗,我8毛啊。然后通1,000问说那你们都降,我也来呗。我后边反正是阿里云,谁怕谁啊,最多的显卡都在我手里头,那降价啊,把通1,000问最新的千问Max千问浪什么,全都降到了一个白菜价。当然同1,000问降价的时候呢,还是用了一些小花招的啊,他把输入TOKEN跟输出TOKEN的价格分开了。什么意思?就是当你往里梳的时候,你也是算TOKEN的,当它往外吐的时候,也是算TOKEN的。就是它把往里梳的这个TOKEN的价格,降低了更多啊,往外吐的这个TOKEN呢,也在降,但是降的并没有那么多。大家能够理解,就是你往里输的内容,比如说现在有很多的大模型号称是可以输入100万字,200万字,但是他每一次输出,可能也就输出个1,000字,2,000字,他不会输出那么多的。你说一大模型坐在那,吭哧吭哧给你吐100万字出来,有人看没有?一个人坐在那阅读,读100万字也得会功夫吧。所以呢,从大模型输出的这个TOKEN稍微贵些啊。然后百度特别逗啊,百度先强调了一下,说不要关注价格,要看这个大模型的特性,以及大模型的性质,是不是适合你的场景。讲完了以后呢,左右一看说哎,你们都跑了,等等我等等我,对吧?直接把手里头两个最常用的模型,一个叫快速模型,一个是轻量级模型免费,对吧你们还要收钱吗?咱不要钱了。

Read More…

开发者关系社区探讨

~ 开发者社区越来越被大家所关注,一个在开发者社区这个圈子里面混了很多年的人,说说自己的看法

开发者关系社区探讨

本文首先发表在一个开发者社区讨论博客中:http://devrel.info 。这是一个博客站,一个由一些和开发者打交道的人,记录和开发者关系相关的一些故事和想法. 之所以说是故事和想法,就是不希望为这里记述的东西赋予太过于严肃的色彩. 故事,那么与事实或历史稍有出入就是可以被理解的;想法,和理论比较起来,可以不是那么严谨.

这是我在这个地方的第一篇博客,想和大家讲一讲开发者社区的事情. 我是Luke Fan,一个IT圈里面混迹多年的,爱讲故事的老胖子.

Read More…

Close Bitnami banner
Bitnami